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S T A T I O N A R Y  P L A S M A  F L O W  I N  A M A G N E T I C  F I E L D  

I N  A N O Z Z L E  W I T H  A V A C U U M  G A P  N E A R  T H E  W A L L S  

V. V. Niku l in  UDC 533.9 

In the problem of controlled thermonuclear fusion, great at tention has been paid to investigations of 
strong nonlinear waves and plasma flows [1]. For plasma heating, Buiko et al. [2, 3] proposed using a shock 
wave that  emerges upon quasi-stationary outflow of a magnetized plasma through a nozzle. In this connection, 
studying stat ionary plasma flows in nozzles in the presence of a magnetic field is very impor tant  [1]. 

The present paper  deals with a stationary axisymmetric flow of a magnetized plasma in a nozzle. In 
contrast to tile previous papers, it is assumed here that  there is a vacuum gap between the nozzle walls and the 
plasma, in which there is a magnet ic  field. To clarify how the presence of the gap affects the plasma motion, we 
consider, without  allowance for other factors, the simplest single-fluid magnetohydrodynamic  (MHD) model 
of an ideally conduct ing incompressible plasma. The nozzle walls are assumed to be ideally conducting as 
well. In addition, an approximation that  is long-wave along the axis of symmetry  is used. It turns out that  
even in such a model, qualitatively new effects caused by the presence of a gap with a magnetic  field in it 
appear. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  An ideal (inviscid, non-heat-conducting,  and possessing infinite 
conductivity) incompressible plasma is considered. The  flow is considered stat ionary and axisymmetric.  The 
cylindrical coordinate system (r, ~, z) with the z axis directed along the axis of symmet ry  is introduced. The 
plasma occupies the region z /> 0, r <~ r l ( z ) ,  where rl is the radius of the free plasma surface. The  flow 
parameters are specified for z = 0. Its evolution is studied, depending on the z coordinate. 

To make a transit ion to dimensionless quantities, we introduce the scales of length, velocity, and density. 
The characteristic scale of changes along the z axis is taken as a unit  length, the characteristic magni tude of 
the axial velocity component  for z = 0 serves as a unit  velocity, and the plasma density is assumed to be equal 
to unity. The  magnet ic  field is nondimensionalized in density and characteristic velocity. In what  follows, all 
quantities are used in nondimensional  form, unless otherwise specified. 

We use the following notation: ( u , v , w )  and ( H I , H 2 ,  H3) are the velocity and magnetic-field 
components corresponding to (r, T, z), A is the azimuthal component  of the vector potential ,  p is the pressure, 
6 is the nondimensional  value of r0 for z = 0 [r0 is the nozzle radius (a known function of z)]. It is assumed 
that  ~ << 1. Owing to the  axial symmetry  inside the pinch, it is assumed that  v = 0 and //2 = 0. In the 
general case , / /2  ~ 0 in the  gap. 

In going to a long-wave approximation, the coordinates and the functions are extended over the relations 
r 2 --* 6271, z ---* z,  2ur  ---* 62q, w ---* w,  p ~ p, 2 H l r  ~ v / ~ 2 h ,  H3 --~ x ~ H ,  and 2 r A  ~ x ~ 6 2 a .  The 
boundaries r l (z)  and t o ( z )  transform into r/l(z) and r/0(z). Note that  7/0(0) = 1 according to the definition of 
& 

Within the framework of single-fluid ideal magnetic  hydrodynamics,  with allowance for the axial 
symmetry, the plasma mot ion is described by the following equations: 

82(qq~ _ q2/(2r/) + wq~) = -4r lPo + ~2(hh,  - h2/(2r/) + H h z ) ,  

qwo + ww~ = - P z  + hH~ + HH~,  Wz + q~ = 0, wa~ + qa~ = 0, (1.1) 
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h = - a z ,  H = a , ,  P = p + H 2 i 2  + 62h2/ (8 ' / )  

(the subscripts denote partial differentiation with respect to the corresponding independent  variables). 
As the boundary conditions, we adopt the following ones: for ? = 0, 

q = h = 0; (1.2) 

on the free surface (,/ = '/I), the normal component of the magnetic field equals zero, the quantity P is 
continuous, the kinematic condition 

az + a , ? l z  = 0; (1.3) 

q = w'/iz (1.4) 

is satisfied, and the normal component of the magnetic field is assumed to be zero at the tube walls as well. 
The equations for a magnetic field in a vacuum gap are of the form 

4( ' /H.q),  + 6 2 H ,  zz = O, 4' /h , , ,  + 62h,z~ = O, ~ = const, (1.5) 

where H, and h, are the values of H and h in the gap, v/4"~6ze = H,2r, and H,2 is the azimuthal component 
of the magnetic field in the gap. 

In going to a long-wave approximation, the terms in (1.1) and (1.5) that  are proportional to 62 are 
omitted. As a result, from (1.5) we obtain H ,  = H , ( z ) .  Using the assumptions of the magnetic field at the 
tube walls and of the free surface, we find that H, = ~/('/0 - '/1), where (I, = const. With allowance for the 
smallness of 62, for ' / =  '/1, the continuity condition of P takes the form 

p = @2/[2(,/~ _ ,/,)2] + ~e2/(2'/,). (1.6) 

After the terms with 62 are ignored, the equations derived from (1.1) are transformed similarly [4]. New 
independent variables z ' and v (v e [0, 1]) are introduced into the relations z = z ' and ,7= R ( z ' ,  v ) ,  where R 
satisfies the equations and the boundary conditions 

w R z , = q ;  R ( z ' , O ) = O ,  R ( z ' , l ) = ' / 1 ,  R(0, v )= ' /10v ,  

where '/10 is the value of '/1 for z ' = 0. In this case, the unknown boundary '/l(z) transforms into the known 
~,--1. 

For differential operators, we write 

OR 0 OR 0 OR 0 OR 0 0 
0~, Oz = Ov Oz' Oz' Oz,' 0~, 0 ' / =  O-w" 

After the terms with 62 are ignored and q is discarded, in variables z I and v, system (1.1) takes the following 
form (below, the prime at z I is omitted): 

P~, = O, w w z  = - P z  + H H z ,  ( w R , , ) z  = O, wa~ = O, hR~, = R~a~., H R , ,  : a~.. (1.7) 

The above relation incorporates that  Pv = 0 and az = 0. We assume that  w ~ 0. From the equation w a z  = O, 

it follows that  a = a(~,). It is assumed that a = a(v). With allowance for a = a(v), '/l(Z) = R ( z ,  I), and 
the definition of R, the boundary conditions (1.2)-(1.4) are satisfied automatically. Using (1.6), we exclude 
P from (1.7). The equations are integrated over z from 0 to z and are solved with respect to 7]o- As a result, 
we obtain 

[ 
'/0 =Rl- t-ffP ( l - R 1 0 )  2 r  " { - ~ +  \RI'lJ - \R10J  J ' (1.8) 

V 

R(~,,z) =/woRio(W2o + r R, = R(1,z), R,0 = R(1,0), 
0 

where r = w 2 - w02 and w0(v) is the value of w for z = 0. Equations (1.8) express an implicit dependence 
r  v) that should be found. 
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Fig. 1 

To reveal unambiguously the effect of a vacuum gap with a magnetic field on plasma flow, we shall 
first analyze (1.8) for the case where ae = 0 and ag = 0. This implies that the azimuthal field component is 
zero and there is no magnetic field inside the pinch. After that,  we shall analyze the case where ~e ~ 0 and 
a.#O. 

P r o p o s i t i o n .  Assume that ae = 0 and ag = O, the function wo(u) is bounded [w0(u) t> "7 > 0], and 7 
is a constant, 

2 A -  ( l - R 1 0 )  3 1 
r R10 J wo 2 du, 

0 

~2 ] -3/2 
2Ax = �9 (1 - Rio) 2 q- 3'2 

1 
- -  / woRlo(W2o - -  '72)-3/2 du. 

o 

It is assumed that A1 < O. The quantity r is considered in the interval 

_.72 < r < (i)2/(1 _ R10)2. 

The following cases are distinguished: 
1. A > O. The solution then exists for any qo > qo. and qo. < 1, where qo, is the solution of a certain 

integral equation, r and w increase as rio increases from qo. to o% whereas R1 decreases to finite values for 
qo ---,oo. 

2. A < O. The solution exists for qo. < rio < rio(l), rio. < 1, and ri0(1) > 1: 

~2 --I/2 1 
riO(l) = @['(1 "Rio) 2 -t-'7 2] -t- jwoRxo(w20- .72)-1/2du, (1.9) 

0 

r and w decrease as rio increases from rio. to rio(l), whereas R1 increases. 
In both cases, for 77 ---* rio. the derivatives r and R1 with respect to rio in magnitude tend to infinity. 
Proo f .  We set a~ -- 0 and av = 0 in (1.8). Then, it follows from (1.8) that r is not dependent on u. We 

consider the right-hand side of (1.8) as a function of r and denote it as f ( r  (R1 is regarded as a function of 
r as well). It then follows from (1.8) that r -- r We shall analyze this dependence. 

In the interval indicated above, f ( r  > 0. It is easy to see that f " ( r  > 0. It follows that  f ' ( r  is a 
monotonically decreasing function. From the expression for f ( r  we have f,(_'72) __ A1 < 0 and f ' (0)  = A. 

(1) Let A > 0. By virtue of a monotone increase in f ' ( r  and of the inequality f,(_'72) < 0, the 
function f ( r  is of the form shown qualitatively in Fig. 1. Clearly, if ri0 increases (the nozzle diverges), then 
f ( r  r  and, hence, w increase and the solution exists for any ri0 > 1; if ri0 decreases (the nozzle converges), 
then f ( r  r  and, hence, w decrease and the solution exists only for ri0 ~> ri0, and r  r  where r  is found 
from the equation f ' ( r  = O, and ri0, = f(!b,). 

(2) Let A < 0. In this case, f ' (0)  < 0, and the function f ( r  has a minimum to the right of the 
coordinate origin. It follows that  if ri0 increases, then f ( r  also increases, and r and w decrease, the solution 
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existing until r reaches the  value -72 .  Thus,  the solution exists for 7/0 ~< r/0(l), where r/0(l) is expressed 
according to (1.9). It follows from the definition of w that ,  at r/0 = r/o(l), we have w = 0 for v specified by the 
equation wo(v) = 7. If r/0 decreases, then f ( r  also decreases, while r and w increase, the solution existing 
for r/0/> r/o. and r ~< r  where r  is the solution of the equation f ( r  = 0. 

Evidently, in both cases the  derivatives of r with respect to 7/o in magni tude  tend to oo for 7/o -* r/0, 
and r -* r  The  dependence of R1 on r/o follows from a monotone decrease of R1 as a function of r  

For mathemat ica l  generality, we analyze the case A1 > 0. Physically, such a flow is far from reality, 
because under this condition the  function (w02 - 72) -s/2 should be integrated on [0, 1]. Let the conditions of 
the proposition be satisfied, except for the inequality AI < 0. We assume that  A1 t> 0. Then  the solution exists 
for any 7/o t> r/0(l), r growing as r/0 increases. 

The  proof follows from the fact that  the function f ( r  for A1 /> 0 on the section [ -72 ,  r  R10) -2] 
is monotone. 

Thus,  it follows from the Proposition that  the dependence of r  w, and R1 on 7/0 is qualitatively 
different, depending on the  sign of A. By analogy with flows of shallow water or gas, we call the flows with 
A < 0 subcritical and those with A > 0 supercritical. In a subcritical regime, the axial velocity decreases in a 
divergent nozzle and increases in a convergent one, and vice versa in a supercritical regime. 

2. A l l o w a n c e  fo r  t h e  A z i m u t h a l  C o m p o n e n t  of  t h e  M a g n e t i c  F i e l d  in  a G a p  a n d  of  t h e  
F i e ld  I n s i d e  a P l a s m a .  Let us analyze how the indicated parameters exert an effect on the flow pattern. 
We first set a~, = 0 and a~ ~ 0 in (1.8). In this case, r is not dependent ,  as before, on v, and one can consider 
R1 as a function of r We introduce the following notation: 

g(~b) = r - Rio) -2 - r - ~e2/Rl + a~2/RlO, g l ( r  -- r - Rio) -2 - oq~b, 

G 1 ( r  = r  - R i o )  - 2  - G 2 ( r  = r  - R10)  - 

g2(r = G1 if r /> 0 and g2(r  = G2 if r < O, f = R1 + r f l  = R1 + r f2 = R1 + r 
F1 = RI+r F2 = RI+r and crl is determined by the  condition g~ (0) = g'(0) and a2 is determined 
by the condition Gl(r = g(r  = 0 [such a r exists by virtue of the  continuity and monotonici ty  of g(r 
and ~3 is determined by the  condit ion G2(-72)  = g ( -72) .  

Let us analyze the properties of the function g(r  on the section _.72 ~ r ~ r Having differentiated 
it twice, we obtain 

g ' ( r  < - 1 ,  

1 2 1 

0 0 

Using the Cauchy-Bunyakovski i  inequality, there is no difficulty in obtaining tha t  g ' ( r  > 0. Thus,  g(r  is 
a concave monotonically decreasing positive function. From that  and also from the definition of gl and g2 
follow the relations gl ~< g <~ g2, ~1 = g'(O), and aa < g~(O) < ~2 < - 1 .  Then 

f2(~b) < f ( r  <~ f : ( r  (2.1) 

f ' (0)  = f~(0), f ' (0)  > f : (+0 ) ,  f ' (0)  < f : ( - 0 ) ,  

where f ( + 0 )  is the right or left derivative f2 in zero. 
It is seen that  the results of the proposition hold true for the functions f l ,  FI,  and F2 with replacement 

of A by the zero derivative of the corresponding function. It follows tha t  the qualitative form of f : ,  F1, and F2 
is similar to that  of f ( r  (see Fig. 1). Owing to the fact that  f is constrained by inequalities (2.1), the specific 
features of the flow will be qualitatively the same as in the case considered, i.e., for ee ~ 0. Correspondingly, 
the subcritical and supercritical flow conditions take the form f~_(-0) < 0 and f,~(+0) > 0. With  satisfaction 
of these conditions, the quali tat ive similarity of the solutions with :e = 0 and ~e ~ 0 is guaranteed.  For physical 
estimates, it suffices to preserve either the criterion f ( 0 )  > 0 or the criterion f'(O) < 0, since, in this case, 
locally, near zero the behavior of f(~b) remains the same both for ee = 0 and for :e ~ 0. 
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Let us evaluate the effect of the magnetic field inside a plasma on the flow pattern for a particular case 
where the field inside a plasma and the axial velocity component for z = 0 are not dependent on the radius. 
We assume that  w0 = const and a = HoRlou ([to is the dimensionless axial component of the magnetic field 
in a plasma for z = 0). From (1.8), we then obtain 

R = R 1 ( r  RI = ~0R10(~0  ~ + r  

f ( r  = R1 + r  - R10) -2  - r  - H~/w~)) - ~2/RI + a~2/Rlo] -1/2. (2.2) 

Clearly, two cases are possible. 
(1) 1 2 2 2 ( 1 -  , ,2-  2 , -1/2 - H~)/Wo) and ~e, = - H~ /w  0 > 0. Introducing (I), = r 2 2 -1/2 n6/Wo) , we reduce the 

problem to the preceding one, where (I), and a~, are used instead of (I) and ze, respectively. Thus, a sufficiently 
low internal field has no effect on the qualitative behavior of the flow. 

(2) i - H~/w o < 0. Under this condition, to clarify up the behavior qualitatively, we confine ourselves 
to the case a~ = 0. Here f l ( r  < 0. The function r/0 increases with increasing f ( r  and, hence, r and w0 
decrease. If 77o decreases, then vice versa. Thus, in this case, the flow is always subcritical. It follows that a 
sufficiently high field inside a plasma affects strongly the flow pattern. 

3. Disc ' ass ion  o f  R e s u l t s .  Let us dwell upon the most considerable qualitative difference between 
the flows in nozzles with a vacuum gap and without it. We consider the conditions under which a subcritical 
flow regime is realized. 

The subcriticality condition is f'(O) < 0. Expressing f according to (2.2) and assuming that the field 
inside a plasma is sufficiently low, i.e., the case 1 - H 2 / w 2  o > 0 is realized, we find that the inequality f ' (0)  < 0 
is satisfied if 

(1 -- R10) a ae2,(1 _ R10) a 1 1 + fwo d ,- Riof= 2du < 0 .  (I) 2 2Rio~  2 
0 0 

In going to dimensional variables, under the assumption that  w0 = const, we obtain 

H,~0 
> 4 - ~ o  ] -F 8~rpw2 j \ ~10  

(3.1) 

where H,30 and H.2o are the axial and azimuthal components of the magnetic field in the gap for z = 0 and 
r = ri0, Ha0 is the axial component of the magnetic field inside a plasma for z = 0, rl0 and r00 are the radii 
of the free surfaces of the pinch and nozzle for z = 0, respectively, w0 is the dimensional axial component 
of the plasma velocity for z = 0, and p is the plasma density. For a supercritical regime, the conditions are 
found similarly. 

It follows from (3.1) that  the flow regime is determined not only by the relationship between the 
magnitude of the magnetic field and the axial velocity, but also by the flow geometry (the ratio of r00 
to rl0). There is a considerable difference in the flows with a vacuum gap near the walls and the flows 
immediately adjacent to them. Thus, with the same relationship between the magnetic field and the axial 
velocity component, varying the ratio of r00 to rl0, one can transform a subscritical flow into a supercritical 
one and vice versa. 

Note that according to the proposition, the plasma motion in a subcritical or supercritical regime 
is qualitatively similar to the flows of an ideal gas in nozzles. For example, the gas in a convergent nozzle 
accelerates in a subcritical flow and decelerates in a divergent one, and vice versa in a supercritial regime. 
Thus, the gas flow depends on the ratio of its velocity to the velocity of sound. In the case considered, the 
flow character depends on the ratio between the flow velocity and the velocity of long waves propagating over 
the plasma surface. 

Let us discuss the applicability and importance of the model considered. The choice of the model of 
an incompressible plasma was made for the following reasons: 

(1) It is possible to construct a rigorous easy-to-interpret theory and to s tudy correctly, on its basis, 
the effects that  are inherent in incompressible flows and that will show up, in one form or another, in more 
complicated cases as well; 
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(2) Based on the results obtained, one can make a more complicated analysis (for example, to 
incorporate the compressibility). Thus, the results presented can serve as the foundation for further advance 
of the theory. 

In addition, the very model of an incompressible plasma is of interest. It is applicable not only to slow 
flows but to fast ones if the plasma pressure varies slightly during its motion in a nozzle. Since the plasma 
pressure is determined by the magnetic pressure in a gap, the pressure varies little if the vacuum gap changes 
not too significantly during the entire period of plasma motion. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
01771). 
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